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Abstract—A higher-order shear deformation theory of plates accounting for the von Karman
strains is presented. The theory contains the same dependent unknowns as in the Hencky-Mindlin
type first-order shear deformation theory and accounts for parabolic distribution of the transverse
shear strains through the thickness of the plate. Exact solutions of simply supported plates are
obtained using the linear theory and the results are compared with the exact solutions of 3-D
elasticity theory, the first order shear deformation theory, and the classical plate theory. The present
theory predicts the deflections, stresses, and frequencies more accurately when compared to the
first-order theory and the classical plate theory.

INTRODUCTION

First general solutions to the equations of linear elasticity corresponding to thin plates were
presented by Cauchy[1] and Poisson[2] using the methods of series expansion, and by
Kirchhoff[3] using certain hypothesis. An expansion in powers of the thickness of the plate
was used by Goodier{4] to obtain a general solution in terms of a series of biharmonic
functions for a plate subjected to edge tractions. It is well known from experimental
observations that the Poisson—Kirchhoff theory of plates, in which it is assumed that normals
to the midplane before deformation remain straight and normal to the plane after defor-
mation, underpredicts deflections and overpredicts natural frequencies. These results are
due to the neglect of transverse shear strains in the classical plate theory (CPT).

Refined plate theories, due to Levy[5], Reissner[6, 7}, Hencky[8], Mindlin[9], and
Kromm{10] are improvements of the classical plate theory in that they include the effect of
transverse shear deformation (see[11]). In the Hencky-Mindlin theories the displacements
are expanded in powers of the thickness of the plate (see[12-14]). Extensions of the
Kirchhoff-von Karman theory[15], a geometrically nonlinear theory associated with the
classical plate theory, to refined plate theories were considered by Reissner[16, 17] and
Medwadowski{18]. Extension of the Kromm’s theory to geometrically nonlinear analysis,
in the sense of von Karman, is due to Schmidt[19].

These higher-order theories are cumbersome and computationally more demanding,
because, with each additional power of the thickness coordinate, an additional dependent
unknown is introduced into the theory. Further, these theories require an arbitrary cor-
rection to the transverse shear stiffnesses, and the transverse shear stresses do not satisfy the
conditions of zero transverse shear stresses on the top and bottom surfaces of the plate. Of
course, the Reissner-Kromm theories satisfy the stress free conditions, but these are based
on the stress fields. Thus, need exists for the development of a higher-order shear defor-
mation theory that avoids the shear correction factors, and accurately predicts transverse
shear stresses. Levinson{20] considered such a plate theory, in which the in-plane displace-
ments are expanded as cubic functions of the thickness coordinate. Unfortunately, both
Levinson[20) and Schmidt[19] used variationally inconsistent set of equilibrium equations
(they used the equilibrium equations of the classical plate theory), and therefore did not
correctly account for all of the strain energy associated with the displacement field.

The present theory accounts for the cubic variation of the in-planc displacements
through the plate thickness, the von Karman strains, and transverse shear strains which
vanish on the top and bottom faces of the plate. The equations of motion are derived using
Hamilton’s principle, and therefore they are consistent with the assumed displacement field.
In order to illustrate the accuracy of the present theory, the exact solutions of the linear
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theory are presented for bending and vibration of simply supported, homogeneous, iso-
tropic and orthotropic rectangular plates. Comparison of the present solutions with the 3D
elasticity solutions shows that the present theory yields more accurate stresses and natural
frequencies than the first-order shear deformation theory.

KINEMATICS
We begin with the displacement field in which the displacements along the x- and

y-directions are expanded as cubic functions of the thickness coordinate, and the transverse
deflection is assumed to be constant through thickness:

u(x, 3,2, 1) = u(x, 3, 1) + 29 (%, y, 1) + 22§,(x, y, 1) + 2 %, y, 1)

u(x,,2, 1) = v(x, 3, 1) + 2,(x, y, ) + 2% (%, y, ) + 2°( (%, , 1)

uB(xsy’ t)=W(x,}’, t)- 1
Here u, v, and w denote the displacements of a point (x, y) on the midplane, and , and v,
are the rotations of normals to midplane about the y and x axes, respectively. The functions

o Lo &, and {, will be determined using the condition that the transverse shear stresses,
0., = 05 and g,, = ¢, vanish on the plate top and bottom surfaces:

h h
a,(x, ¥, ii’ t) =0, a.(x, ¥, ii’ t) =0 )

these conditions are equivalent to the requirement that the corresponding strains be zero on
these surfaces. We have

Ouy | Ouy 2y , OW
65_52 +'é—— <+ 228+ 3z cx+—a—
ou, Ou ow
€= -‘:ﬁ = =y, +22¢,+ 32, + % 3

Setting ¢(x, y, £ h/2, 1) and ¢,(x, y, £ h/2,t) to zero, we obtain

4 (ow
Cx= 3hz(ax+|/’x)¢ Cy 3hz(ay+¢y) (4)

The displacement field in eqn (1) becomes

2
)
i)

Uy =w.

One should note that, although cubic variation of the in-plane displacements through
thickness is accounted, the displacement field in eqn (5) contains the same number of
dependent variables as in the first-order shear deformation theory. This is an attractive
feature from finite-element modeling considerations.
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The von Karman strains associated with the displacement field in eqn (5) are
6=6"+2("+ 2%
6= 6"+ z(k” + 2%K,%)
6=0 )
=60+ 2%
€= & + 2%k’

€= € + 2(x + 2%x)

u 1(ow\ oy 4 [0y, ow
0. = -t 0=__‘_£ 2=_____ el —
& ‘ax+2(6x)’ M= 3h2<0x +ax2

w 1w\ , o oy,  ow
0. X 0 _ % AN .4
@ “ay+2(a ) i R T (ay t

where

ow 4 ow
£‘0=_,,, V/;"“‘é';, x4z= _F(wy""aj;) (7)
ow
.px ’ 'CS = -hz ('l’x ax)
u o owow , oY, O O, Oy, , P
0. 0 X 420 [ J—— X z
C=ptatmy Ty T ¢ T (ay %x 25y )

It is interesting to note that the new strain components contain higher-order derivatives of
the transverse deflection.

CONSTITUTIVE EQUATIONS

For a plate of constant thickness # and made of an orthotropic material (i.e. the plate
possesses a plane of elastic symmetry parallel to the x—y plane) the constitutive equations

can be written as

o, _ @n Cu O }{e o) _ Ou 0 Ve (8a)

60=10n @n 0 He&p o5 10 0 €
s, 0 0 Qellcs

where Q are the plane-stress reduced elastic constants in the material axes of the plate:

E Vi By - E,
r XN T
1 — Via¥y 1= vivy

(8b)

Qu = Gz, Oss = Gis, Qes = Gi2.

EQUATIONS OF MOTION
Here we use Haminton’s principle to derive the equations of motion appropriate for
the displacement field (5) and constitutive equations (8). The principle can be stated in
analytical form as (see Reddy and Rasmussen[21])
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t [‘ A2
f (0,0¢;, + 6,0¢, + 6,0€; + 6,0€, + G50€5) dA dz + J‘ qéw dx dy] di
R

0LJ=-h2JR

\ J N J plG) + () + (4] dA dz dt

-h2 JR
dou  dw déw ooy, 4 (06y, 0%w
f{”‘(ax 3x ox )*M’_a}_J’P‘[ W(‘&’J’axz ]

d6v  ow déw 28y, o6y, | 9%w
z( 5 )y (5 o)

o

1
|
‘o—z

& 3 o
26_u i&_v ow ddw  8ow ow M o6y, 0oy,
N y 6x By | ox oy oy +W

4 (6y, aa.p, 32w 26w
[w( 25 [ o+ 5)

I )

+ qéw} dx dy dr - L’ L {614[111'1 + (12 o 1.)¢, ( 3h,>1. Zw]

+ 60[1.0 + (1, wz.).p, 3h,_14 ‘;‘”] + Jw[l,w <3 h,) 1,(31‘: + ‘;; )
3h’1‘(gu gu) 3:2(15 mh )(? + aﬁ )]

o (e o (- S 5

4 ow 4
3h’(l’ 3h2”)a] a¢,[(1, 3h’1‘)

8 16 4 o
+(” 3h21’+9h"’)"” 3h2( 3h=”)a ]}d"]d‘ ©)

where the stress resultants N, M, P, Q; and R, are defined by

(h12
(NI’MJ" PI)= a,(l,z,z’)dz(i= la 2! 6)
J -2

a2

(Qb Rl) = 04(19 22) dz
o —h2

a2
Qi R) = " oy1,2%) dz (10

and the inertias I(i =1, 2, 3,4, 5, 7) are defined by

a2
(Ih 12’ IJ’ Ib 159 17)=J. P(l: Z, 22, 23, 24) 26) dZ. (ll)
—h2
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Integrating the expressions in eqn (9) by parts, and collecting the coefficients of du, dv,
ow, 8y,, and 8y, we obtain the following equations of motion:

AN, 0N, . g 4 0w
du: g+-5,--1:u+lellx—§-h-5145;
N, N, .. ,» 4 oW
ov: a—+—a7 110+I;llly—§pl.—a-;
00, 00, ow ow\ 0 (. ow w
5 a +E+ax Nax+Noa 5 Nsa Nza
+ 6R,+6R1 + 3 a’P,+262P6+62P,
I=5\%x "oy ) T3\ 0x2 T oxdy T 0y?
L[4\ (3 o o 05 o, o,
‘I‘W“(W)”(b?+5?) 3h="(a *% )+3h’I’(ax + ay)
. aM‘ aM(, 4 aP‘ aP6 - e 4
Wi 5o+, ~Qtph- 3h=(a +6y) Li+ by, -5l
. 6M6 aMz 4 4 aP6 aPz - . 3
5{0),. % +—= Q2+h2R2 3h2<6 +"67 —[20+13¢y 3h2La (12)
where
4
I;=12 3h21‘) , 15 3h2
8 16
IJ=13-3_,,315+W17' (13)

The boundary conditions are of the form: specify
Uy or N,
Ups OF Npys

w or O, (14)

%orl’ r

Y, or M,
Yns OF M,,,

onl

where I is the boundary of the midplane Q of the plate, and

u, = un, + vn, u,, = —un, + vn,
N,=Npn2+Nnl+2Nan,
Ny=(N,— N)nn,+ Nyn?—n?)
M,=Mn2+Mpn?+2Mpn.n,
M, =(M,— Ml)nx"y + Mn?- n?)

4
Qn=anx+Q2ny 3hz aP +N (15)
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-~

M,=M,——P,(i=1,2,6)

3h2

0:=0~ R(l—-12)

ow ow
( +N6 F ) (Ng ox Nza)ny
9
on

_ 0 a 0 0 0
"ax+ 135 Bs "ay ~Mox
and P, and P,, are defined by expressions analogous to N, and N,,, respectively. This
completes the derivation of the governing equations. An examination of the boundary
conditions in eqn (14) shows that both y, and ow/dn are geometric boundary conditions
in the present theory. Consequently, one should use interpolation functions that guarantee
interelement continuity of slopes in the finite-element modeling of the theory.

The resultants defined in eqn (10) can be related to the total strains in eqn (6) by the
following equations:

N, Ay A, 07)(¢°

N} = An 0 (¢
N sym. Ag |l e
[ (M [Py Dp, O7[Fy Fy OW T ([
M, D, 0 F, 0 K3
M, sym. Dg, | | sym. Fy | K
3 = } , r
41 sym. [H, H, 0 ki
P2 H, 0 K3
o ) L Lsym. He | | %% J

Q, = Au 0 e (R, = Fu 07]fx? (16)
Q 0 Ax|lel) R 0 Fylxs
where A;, By, etc. are the plate stiffnesses, defined by

b2
(Al'j’Dlj’Flj’HU)=J‘ Q,,(l,zz,z‘,z“)dz(i,j= 1,2’6)

A2

(Ay)Dy, Ej)zj‘ Qﬂ(l’zz5 Z‘)dZ(i,j=4, 5) (17)

or

i=0Qp Dy= ,,(h’/12)
y = Q(h*/80), H,= Q[(h7/448)
= Gph, Ass=Gph (18)
= Gu(h*/12), Dys = Gyy(h*/12)
Fyu = Gx(h°/80), Fy=G,(h’/80).
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EXACT SOLUTIONS FOR SIMPLY SUPPORTED RECTA_NGULAR PLATES
The exact analytical solution of the nonlinear partial differential equations in eqn (12)
is an impossible task. Even the linear equations do not allow an exact solution for all
geometries and boundary conditions. Here we consider the exact solutions of eqns (12) and
(13) for infinitesimal displacement theory of simply supported, rectangular plates. Since the
coupling between stretching and bending is zero for the linear theory, we consider only the
flexural displacements and natural frequencies. The following “‘simply-supported” bound-
ary conditions are assumed (a and b are the plane-form dimensions and the origin of the
coordinate system is taken at the lower left corner of the plate):
w(x,0)=w(x,b)=w(0,y)=w(a,y)=0
Py(x, 0) = Py(x, b) = P\(0, y) = Py(a, y) =0
M(x, 0) = My(x, b) = M,(0,y) = M\(a,y) =0 19)
¥i(x, 0) =y (x,0) = ¥,(0, y) = ¥,(a, y) = 0.
The resultants of eqn (16) can be expressed in terms of the generalized displacements, for
the case of infinitesimal displacements, as
du dv
N, =Aub; +A|25};

Ou ov
N2 =A|2‘a—; +A22'-a;

ou oy
A“(ay 6x)
o,

Ml Dll Ox

)(3‘/’; azw) Fu( 3h2>(aa|ﬁ’ + = )
wondpon o Bl
el )oY
ey
0 = A,,(w += aw) + D,,( - %)(w, + %’)

Pi=Fy aa% +F "aaﬁ: +H“( 3h2)<aa% axt ) H“( 3h’>(a¢';: T )
om0 %5
ol )Y )
wealon)or{-5403)

R, = D,,(gw + l//,) + F,,( )(w, + g—z) (20)

P2=F12
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The last three equations in eqn (12), for the linear theory, can be expressed in terms of the
displacements as

Bh’[F Wkt a;w; H “( 3::2)(?3“* 6x‘) +Faga, aa;:gyy
+H "( 3::2)(;:;2; axzay )+ Fi a%;
+H "( 3h2)(a%; axToyt )+ Fa aa;'fl’y
+ H”( 3h’)(63%+ = ) ”(aig; + aay?:a;)
+ 2}1“( 31;2)(3%; ai?a’y +2 aj:awy )]
A2
{5 3]
["”(?x + 3;“;) +D ”( hz)(?;, tox )
) 0]
=4 %2: (3;;2) I"(ai:azz + 5,2%’) * 3w };(a;gfz * : Zy’) (212)
Dt + D + il i) o+ 5
+h ”( 3 2)(:3; + ai;j ) +D “(Z;u; + o3y 53;)
B
oo )]
+ ?3;3) + gy g z,g +H "( 3h’)(g:g; + ai:a: )
e R0+ 50) 1l e+ e 2anay) |
e B G

o, _ 4 g Ow
arr 3k gxor?

=] (21b)
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ERE TR

+Dpyost g;"a"‘ + Dy a;wz’ +F '2( - ;;3)(% * %)

B 22) o ) oo - 20 2]
s ) el 2 )

+Fa3—= g 22” +H, '2( 3h2)(% "'%)

+Fagd %z'l;’ + ”ﬂ( 3h2)<%2y% * %}:)]

Aol ov)r{-35 )

(21c)

Following the Navier solution procedure, we assume the following solution form that
satisfies the boundary conditions in eqn (19),

[ ]
w= Y W,,sinox sin fy e
mam1

= Y X, cosax sin By e (22)

mam=]
[
¥,= Y, Y,,sinaxcosfye
ma=1

where « = mn/a and § = nn/b, and w is the frequency of the natural vibration. Further
we assume that the applied transverse load, ¢, can be expanded in the double-Fourier series
as

qg= i Q.. sin ax sin By, (23)

mae=|

Substituting eqns (22) and (23) into eqn (21), and collecting the coefficients, we obtain

M, M; M; Wm e €2 3|(Wem O 24
My, My MuRX 3+ €z € K Xpmp=40
M, My M, Ym €3 € € )| Yom 0

for any fixed values of m and n. The elements c;=c¢; and M; = M, of the coefficient
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matrices [c] and [M] are given by
8
oy =’Ass+ BPAu - 7 (2*Dss+ B*Dyy)
( ) (2*Fss + B*Fa)+ (3/12) [a*H,, + 2(H,; + 2H)a*f* + B*Hy)
8 4 4 2
cp=0adg— 7 aDgs + P “Fss - W[a Fy, + ap*(Fy; + 2F))
4\2
+ (W) [@’Hyy + aB*(H,; + 2H))
8 4\? 4
3= PAu— 'h‘z‘ﬁD« + i BF, _W[a B(Fyy+ 2Fg) + B*Fr)
+ (33 BB+ 2600+ PR
8 4\?
Cp= A55+G2D“ +ﬁ2D“ h2D55+<h2) F55
8 ., 2 2
_W(a Fi + B°Fe) + 3h2 (“ Hy, + B*He)

8 4\
Cy= “ﬂl:Du‘*‘ D - ‘3—,‘;2(F|z + Fee) + ('3',?) (H,, + Hu)]

8
Ci3 = A“+ azD“+ﬂ2Dn—PD“+ (hz) F“

4\2
3h2 (2 Fe + B*Fp) + (3h2> (B*Hyp + a*Hy)
M,= I|+I7<3hz>(“ + 8%
I. 4
M,= - 3h2 s, M3= W’sﬁ
My= Is: M33=[3, My=0. (25)

For static bending eqn (24) takes the form

w) (@
ickxb=1o 26)
Y 0
w w
(X x b = wfM) x @)
Y Y

and for free vibration we have
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where

g = ":8— h(azGu + ﬂZGB) + [a‘Q” + 2(2012 + Qu)aZﬂZ ﬂ‘sz]

8 — haG,, —

G [“3Qn +ap¥2G;; + Q1))

=

315

8 4n’ s
Cpy = 'l"s‘hﬁGza - ﬁ‘g[a B(2G, + Q12) + B0l

8 173
Cy = 15 —hGyy+ — 315 == @0, + B*G)y)
17aph®
Cpn=—"re 31ﬂ5 G+ Q1)
8 1,
ths +0 (“ G, + B*0xn)

315

and Q; are given by eqn (8b).
The static solution is given by eqn (22) with ¢t =0 and (W, X, Y) from eqn (26). Note
that for uniformly distributed load Q,., is given by

—wi)z,m,n=l,3,...
Q=4 ™™ (28)
O,mn=24,..,

NUMERICAL RESULTS
Bending
Numerical results are presented in Tables 1 and 2 for homogeneous isotropic (v = 0.3)
and orthotropic plates under uniformly distributed transverse load of intensity g,. The

Table 1. Comparison of deflections and stresses in isotropic (v =0.3) plates under uniformly
distributed transverse load (m,n=1,2,...,19)

- - - _ Constitutive Egn. Equilibrium Egn,
b/a a/h source w 19, o, +og <, s Ty is
HSDT 0.0535 0.2944 0.2944 0.2112 0.4840 0.4340 0.3703 0.3703
5 (o 2949)*  (0.2949)  (0.2128)  (0.4871)  (0.4871)  (0.3324)  (0.3324)
FSOT 0.0536 0.2873 0.2873 0.1946 0.3928 0.3928 0.4909 0.4909
HSDT 0.0867 0.2890 0.2890 0.1990 0.4890 0.4890 0.4543 0.4543
1 10 (0.2893) (0.2893) (0.1996) (0.4937) (0.4937) (0.4417) (0.4417)
FSOT 0.0467 0.2873 0.2873 0.1946 0.3928 0.3928 0.4909 0.4909
HSDY 0.0444 0.2873 0.2873 0.1947 0.4909 0.4909 0.4505 0.4905
100 (0.2874) (0.2874)  (0.1948)  (0.4965)  (0.4965)  (0.4959)  (0.4959)
FSDT 0.444 0.2873 0.2873 0.1946 0.3928 0.3928 0.4909 0.4909
(0,3972)  (0.3972)  (0.4965)  (0.4965)
cPT 0.0444 0.2873 0.2873 0.1946 0.0 0.0 0.4909 0.4909
(0.4965)  (0.4965)
HSDT 0.1248 0.6202 0.2818 0.2927 0.6745 0,520 0.5615 0.4569
51 esor 0.1248 0.6100 0.2179 0.2769 0.5451 0.4192 0.6813 0.6813
HSDT 0.1142 0.6125 0.2789 0.2809 0.6794 0.5230 0.6448 0.5081
2 10 4 pspr 0.1142 0.6100 0.2779 0.2769 0.5451 0.4192 0.6813 0.5240
HSOT 0.1106 0.6100 0.2779 0.2769 0.6813 0.5240 0.6809 0.5238
100 | fepy 0.1106 0.6100 0.2779 0.2769 0,5451 0.4192 0.6813 0.5240
T 0.1106 0.6100 0.2779 0.2769 0.0 0.0 0.6813 0.5240

*numbers in parenthesis were obtained by m,n = 1,3,...,

29 in the series of Eq. (22).
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Table 2. Comparison of deflections and stresses in orthotropic square plates under uniform
transverse load (m,n =1,3,...,19)

c11%/hgy 9/, %/9,(")
b/a h/fa  Exactt HSDPT FSOPT cPT Exact HSDPT  FSDPT  CPT Exact HSDPT FSOPT cPT

0.05 21,542 21,542 21,542 21,210 262.67 262.6 262.0 262.2 14.048 13.98 11.20 0.0

2 (13.57}) (14.00) (14.00)
0.10 1,408.5 1,408.5 1,408.5 1,326 65.975 65.95 65.38 65.55 6.927 6.958 $.599 0.0

0.14 387.23 387.5 387.6 345.1 33.862 33.84 33,27 33.44 4.878 4.944 3.‘;98 0.0
(4.027) (4.997) (4.999)

0.0 10,443 10450,  10450. 10250, 144,31 144.3 143.9 1444 10.873 10.85 8.701 0.0
(10.45) (10.88) (10.88)

1 0.10 688.57 689.5 689.6 640.7 36.021  36.01 35.62 36.09 5.34] 5.382 4.338 0.0
(4.657) (5.422) (5.442)

0.14 191.07 191.6 191.6 166.8 18.346 14,34 17,94 18.41 3.731 3.805 3.086 0.0
(2.884) (3.857) (3.887)

0.05 2,048.7 2051.0 2051.0 1989.0 4n.657 40.67 40.50 40.84 6.243 6.163 4,948 0.0
(5.765) (6.184) (6.214)

0.5 0.10 139.08 139.8 139.8 124.3 10.025 10.05 9.888 10.21 2.957 2.885 2.436 0.0

(2.893) (3.044) (3.107)

1.999 2.080 1.70%

0.14  39.790  40.21  40.23  32.3  5.036 5.068 4.903 5.209 1. . .
(1.186) (2.131) (2.219)

0.0

'numbers in parenthesis denote the shear stress values obtained from the stress equilibrium equations.

*from Reference [22]

following orthotropic material properties, typical of aragonite crystals (converted from
elastic constants given in[22] to engineering constants), are used.

E; = 20.83 x 10° psi, E; = 10.94 x 10° psi
Gz = 6.10 x 10° psi, Gi3 = 3.71 x 10° psi, Go3 = 6.19 x 10° psi
Via = 044, Vay = 023 (29)

The elastic constant ¢, used in Table 2 has the value of 23.2 x 10¢ psi. The following
nondimensionalized deflections and stresses are tabulated in Table 1:

= w(f, z z)(h Eygua®)

- fab h\ . .
0!‘"“1(5’ 2’ iz)(h /qoa ):l = 1’2

o= 0.0, £5) (30)

2 a‘(g, 0, 0)(h/qoa)

&= c,(o, s 0)(h 196a).

Two pairs of transverse shear stresses, one obtained from the constitutive equations and the
other from equilibrium equations are presented in the tables. In the first-order shear
deformation theory, the shear correction factors are assumed to be L2 = K,? = 5/6. The
following conclusions can be drawn from the results of Tables 1 and 2:

(1) Even for the isotropic plates the effect of transverse shear deformation is significant.
The classical plate theory (CPT) under predicts (for a/b = 1) the deflections by 4.9%, at
a/h = 10 and 17% at a/h = 5, and stress o, by 0.7% at a/h = 10 and 2.6%; at a/h = 5 when
compared to the higher-order shear deformation plate theory (HSDPT); see Table 1.
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- HSDPT
from constitutive
equations

HSDPT

from equilibrium
equations

FSDPT

from constitutive
equations

Fig. 1. Distribution of the transverse shear stress across the thickness of simply supported
rectangular plates under uniformly distributed transverse load (orthotropic case).

(2) The first-order shear deformation plate theory (FSDPT) is quite accurate when the
transverse deflections are concerned. But the stresses are no better than those predicted by
CPT; see Tables 1 and 2.

(3) The transverse shear stresses predicted by the constitutive equations (8) of the
higher-order theory are the most accurate of the three plate theories when compared to the
exact solution of Srinivas and Rao[22]; see Table 2 and Fig. 1. It is interesting to note that
FSDPT and CPT give more accurate transverse shear stresses than HSDPT when the stress
equilibrium equations of 3-D elasticity theory are used:

&2
Oy = "j n (o'xx,x + o'xy,y) dz

etc. (see Appendix 1).
(4) The infinite series for deflections converges faster than those for stresses; the

convergence is slower for thick plates than for thin plates; see Table 1.

Insummary, the higher-order theory yields more accurate distribution of stresses, especially
shear stresses, when compared to the other plate theories. This feature of the higher-order
theory is of considerable interest in the analysis of laminated composite plates, because an
accurate prediction of the interlaminar shear stresses enables an accurate determination of
the strength and failure of laminates.

Natural vibration

The numerical results of the natural vibration of isotropic (v = 0.3) and orthotropic (see
eqn (29) for material properties) square plates are presented in Tables 3 and 4, resp. The
results are compared with the exact solutions of the three-dimensional elasticity
theory[22-24]. In Table 4 the first three eigenvalues obtained by the present theory are
compared with the exact values, and the values obtained by FSDPT and CPT. From the
results presented in Tables 3 and 4 the following observations can be made:



894 J. N. Reopy
Table 3. Comparison of natural frequencies, & =wh(,/p/G), of isotropic (v =0.3) plates

{a/h = 10)
b/a = 1 b/a = /T
m n Exact ASHEY FSOPT TPY m n xact HS| P P
[23) [24]
i 1 0.0932 0.0831 9,093 0.0955 1 1 6.704 0.7038 8.7036 0.7180
(0.0%63)° {0.7224)
2 2 0.226 0.2222 s.2218 0.2360 1 H 1,376 1.3738 1.3729 1.4273
(0.2408) (1.4448)
2 2 0,3421 0.3411 0.3406 0.3732 2 i 2,018 2,014 2.0123 2.128
(0.3853) (2,1671)
i 0.4171 0.4158 0.4149 0.4629 1 3 2.431 2.4263 2.4235 2.5908
{0.4816) {2.6487)
2 3 0.523% 0.5221 0.5205 0.5951 2 2 2.634 2.6283 2.6250 2.8207
{0.6261) (2.8895)
1 M - 0.6645 0.6520 0.7668 2 k| 3.612 3.6013 3.5948 3.9575
(0.8187) (4.0935)
3 3 0.6889 0.6862 0.6834 6.8090 1 q 3.809 3.7891 3.1818 4.1822
{0.8669) (4,3343)
2 4 0.7511 0.7481 0.7446 0.8926 3 1 3.997 3.9748 3.9666 4.8062
0.9632) (4.5751)
3 4 - 0.8949 0.8896 2.0965 3 2 4.535 4,518 4.5089 5,0729
(2.2040) (5.2974)
1 5 0.9268 0.9230 0.9174 1.1365 2 [} 4890 4.8737 4.8608 5.5133
(1.2521) {5.7790)
2 5 - 2.0053 0.9984 1.2549 3 3 §.411 5.3915 5.3754 6.1680
{1.3966) (6.5014)
4 4 1.0889 1.0847 1.0764 1.3716 1 5 5,411 5,3915 5.3754 6.1680
{1.5311) {6.5014)
3 H - 1.1361 1.1268 1.4475 2 5 6.409 6,3886 6.3609 7.4563
(1.6374) (7.9462)

*aumbers in parcnthesis denote natural frequencies obtatned by omitting the rotatory imertia,

Table 4. Comparison of natural frequencies, & = wh(\/plcy;), of an orthotropic square plate

(a/h = 10)
Exact {22} HSDPT FSDPT
m n 1 1I* i1 1 n* 1 I 1 uI CIITr
1 1 0.0474 13077 1.6530 0.0474 1.3086 1.6550 0.0474 1.3159 1.6646 0.0493
1 2 01033 13331 17160 0.1033 13339 17209 0.1032  1.3410 1.730% (?3(:4099? '
2 1 01188 1.4205 1.6805 0.1189 1.4216 1.6827 0.1187 1.4285 1.6921 (g } ;%2)
2 2 01694 14316 17509 0.1695 1.4323 1.7562 0.1692 14393 1.7655 (g ig:)
1 3 0.888 13765 1.8115 0.1888 1.3772 1.8210 0.1884 1.3841  1.8305 (g;g'%)
3 1 02180 15777 17334 0.2184 1.5789 1.7361 0.2178  1.5857 1.7450 (ggé'sl:)
2 3 02475 14596 1.8523 0.2477 1.4603 1.8622 0.2469 1.4670 1.8714 (gi‘gg}
3 2 02624 15651 1.8195 0.2629 1.5658 1.8255 0.2619 1.5725 1.8341 ((0);0233)
1 4 02969 14372 19306 0.296% 14379 1.9466 0.2959 1.4445 1.9560 (gg}??
4 1 03319 17179 1.8548 03330 1.7186 1.8588 0.3311  1.7265  1.8657 (giig?)
3 3 03320 1.5737 19289 0.3326 1.5744 1.9395 03310 15812 1.9479 (gﬂ;;)
2 4 03476 15068 1.9749 0.3479 15076 1.9912 0.3463 1.5141 2.0002 (g:gg)
4 2 03070 1.6940 1.9447 0.3720 1.6947 1.9514 03696 1.7022 1.9586 (g:m)
(0.5415)
* Pure thick-twist modes

+ Numbers in parenthesis indicate frequencies obtained by omitting the rotatory inertia.

(1) The classical plate theory overestimates the frequencies. The errors increase with
increasing mode numbers.

(2) The frequencies predicted by FSDPT are fairly accurate; the error increases with
increasing mode number.

(3) The frequencies predicted by HSDPT are the most accurate of all.

(4) The effect of transverse shear deformation increases with increasing mode
number.
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CONCLUSIONS

A refined nonlinear shear deformation theory of flat plates is presented. The theory
accounts for (a) zero traction boundary conditions on the top and bottom faces of the plate,
(b) cubic variation of in-plane displacements through thickness (hence, a parabolic distribu-
tion of transverse shear stresses through thickness), and (c) the von Karman strains.
Additional features of the theory are that no shear correction factors are used in the theory,
and the resulting equations of motion include the same variables as in the first-order shear
deformation theory. Exact solutions for the case of infinitesimal displacements are presented
for bending and free vibration of simply supported rectangular plates of isotropic as well as
orthotropic materials. The solutions of the higher-order theory are found to be in excellent
agreement with the exact solutions of the three-dimensional theory of elasticity. The
numerical results should serve as references for those who wish to develop a finite-element
model of the higher-order theory described herein. Extension of the present theory to
laminated anisotropic plates is presented by the author (see[25]).
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APPENDIX
Transverse shear stresses from stress equilibrium equations
The transverse normal and shear stresses obtained from the stress equilibrium equations for the classical plate
theory, the first-order shear deformation theory, and the higher-order theory (for simply supported, orthotropic
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rectangular plates) are given below:

(1) Classical plate theory

o, = -:’-—; I+ (E)] ({1 + (2’)]}{ 10,1+ 222G, + Q) + QI W sin ax sin fy

Oy = —8—[] _— (T)][G,Q“ + (ZGu + Qu)!ﬁz]W ©08$ ax sin ﬂy

%n ‘%2[’ - ('zhf)'}‘“’mcw Qi) + B°QulW sin ax cos By

where Q, are given by eqn (86), and # denotes the amplitude in eqn (22).

(2) First-order shear deformation theory

2z
o= 45{[”( )} a[ (—)}}{h:@u+¢ﬁ2(26u+Qu)1X+{(2Gn+Q:z)“zﬂ+ﬁ’QuIY}SiD¢x»5in5}’

u= 5|1~ (7) [0+ #6 + G+ Qoo axsiny

2
Oy = _%[‘ "( ) (a’Gyy + B*0)Y + (Gyz + Q1 JupX] sin ax cos By

(3) Higher-order theory (present)

3
=il 1+ (5) |+ f 1+ (5) P+ 2060+ 0owst+ 0w

+[a’Qyy + af2G,, + QIX 2B (26, + Q) + B*Q) Y} sin ax sin By
=0+ 38[ ( ) {{«°Q,; + (2Gp+ O )efIW

+(@Qy + B*G)X + af(Gyy + Q1) Y] cos ax sin fy
=0, + i’s[ ( ) {(2G + QB + B QulW

+aB(Gy + Q)X +(«3G; + 20 Y} sinax cos By

where ¢, 6, and o,, are the expressions given for the first-order shear deformation theory.



